PHYSICS
 KENAMATICS
 FORM 5

Kinematics refers to motion in a straight line.
There are several graphs that illustrate motion in a straight line:

1. Displacement-Time Graph
2. Distance-Time Graph
3. Velocity-Time Graph
4. Speed-Time Graph

The graphs are illustrated below:

PHYSICS
 KENAMATICS
 FORM 5

Displacement-Time Graph

Displacement represents distance in a particular direction and is a vector quantity.
In a displacement-time graph, displacement is given on the y-axis and time is given on the x axis.

The gradient of any line segment in a displacement-time graph gives the velocity.

a \quad Object is at origin
$\mathrm{ab} \quad-\quad$ Object moved 1 m in a particular direction
b - Object is 1 m away from origin
bc - Object did not move
c $\quad-\quad$ Object is still 1 m away from the origin
cd - Object moved back to the origin
d \quad - Object is back to the origin

Object moved 1 m away from the origin in the opposite direction
e - Object moved away from the origin
ef - Object is stationary
f - Object is 1 m away from the origin
fg - Object returned to the origin.

PHYSICS
 KENAMATICS
 FORM 5

By finding the gradient of any of the following line segments, velocity can be found:
ab - Constant velocity
bc - Zero velocity
cd - Constant velocity in the opposite direction
de - Constant velocity in the opposite direction
ef - Zero velocity
fg - Constant velocity

Velocity $=\frac{\text { displacement }}{\text { time }}$
Velocity $=\frac{\text { distance in a given direction }}{\text { time }}$

Velocity $=\frac{m}{s}$

Practical example:
Imagine a car going around a roundabout with a speedometer reading $30 \mathrm{~km} / \mathrm{hr}$. The speed is constant ($30 \mathrm{~km} / \mathrm{hr}$). Since the direction of the car is always changing, then the velocity will also change. The velocity is not a constant.

PHYSICS
 KENAMATICS
 FORM 5

Acceleration

Acceleration is defined as the rate of change of velocity. The change in $\frac{\text { velocity }}{\text { time taken }}$ for this change will yield the acceleration.

Acceleration $=\frac{\text { change in velocity }}{\text { change in time }}$
Acceleration $=\frac{m s^{-1}}{s}=\mathrm{ms}^{-2}$
Therefore acceleration has the units $\mathrm{m} / \mathrm{s}^{2}$ or ms^{-2}.
If velocity increases then acceleration will have a positive value. Likewise, if velocity decreases then acceleration will have a negative value and is known as deceleration.

In a velocity-time graph, the gradient of any of the line segments gives acceleration:
ab - Constant acceleration
bc - Zero acceleration (constant velocity)
cd - Constant deceleration

The shape 'abcd' is that of a trapezium and the area under the graph represents distance moved.
Hence the area of the trapezium gives the distance moved.

PHYSICS
 KENAMATICS

FORM 5
Area of Trapezium $=\frac{1}{2} \times($ sum of parallel sides $) \times$ height
Area of Trapezium $=\frac{1}{2} \times(9+5) \times 5$
Area of Trapezium $=\frac{1}{2} \times(14) \times 5$
Area of Trapezium $=\frac{1}{2} \times 70$
Area of Trapezium $=35$
Therefore the distance covered is 35 m .

PHYSICS
 KENAMATICS
 FORM 5

Questions:

1. A car starts from rest, accelerates at $8 \mathrm{~m} / \mathrm{s}$ for 10 seconds and then a further 20 seconds. Draw a velocity time graph and find the total distance travelled.
2. A car starts from rest accelerating $1 \mathrm{~m} / \mathrm{s}^{2}$ for 10 seconds. It then continues at a steady speed for 20 seconds and decelerates to rest in 5 seconds. Draw a velocity-time graph. Find the distance travelled and hence find the average speed.

Further Reading:

1. http://www.physicsclassroom.com/Physics-Tutorial/1-D-Kinematics
